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1 Introduction

Optical imaging is a relatively novel method in neuroscience that allows for many neurons to be
recorded simultaneously. Neural action potentials are accompanied with a changing flow of calcium
ions through the neural membrane, which induces an optically measurable response in calcium fluo-
rescence dynamics. The signal is characterized by a transient rising phase due to the onset of action
potentials, and a slowly exponentially decreasing phase after neuronal firing ceases. How to best
extract the underlying neural activity given this optical signal is an open problem. Specifically, this
problem is made non-trivial due to background noise, effects from adjacent neurons, and compli-
cations from the times series dynamics [17, 15]. Here we present a systematic review of existing
techniques and their relationship to optimization. We expand the current state of the field by pro-
viding various new frameworks. Additionally, we implemented a subset of these frameworks and
provide demonstrations of their effectiveness.

2 Related Works

2.1 Spatial-temporal deconvolution method

A recent work [17] extracts both spatial positions of neurons in the calcium recording videos, and
temporal events. The algorithm iteratively optimizes over both spatial and temporal models. To be
more specific, the calcium signal model is the following:

Y =
K∑
i=1

aic
T
i +B + E = AC +B + E (1)

Where the video data is represented by a matrix Y ∈ Rd×T such that each column represents a frame
vectorized into a d array. The length of the recording is T frames. The ith neuron is characterized
by its spatial “footprint" vector ai ∈ Rd

+ depicting the neuron’s shape and location. The calcium
signal time series ciRT

+ modeling the neurons mean fluorescence signal. The noise E ∈ Rd×T is
assumed as Gaussian, E(t) ∼ N (0,Σ). Σ is a diagonal matrix, assuming that the noise is spatially
and temporally uncorrelated. The authors characterize the fluorescence signal such that it behaves
in a pattern of transient rising when there are neural activity events si, and exponentially decreasing
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Figure 1: An example of in vivo calcium imaging recording on a rat. The recording device is in
panel a. One frame of the video is in figure b. Selected neuron’s spatial positions and extracted
time series of the fluorescence are shown in panel c. The figure is from [11]. The sampling rate of
the recording is 15 Hz, while the length of a unit action potential is around 1 ms. The goal of the
deconvolution methods is to extract underlying neural activity of the recordings of visual signal.

otherwise [10, 14]. Thus the response fluorescence signal can be treated as the convolution of the
event sequence and an exponential kernel,

ci(t) =

p∑
j=1

γ
(i)
j c(t− j) + si(t) (2)

For simplicity, we take p = 1. This simplification matches the real data quite well. It is worth
noting that the neural activity si are positive values and not discrete integers or binary values. This
is due to the the nonlinearity of the fluorescence response. Stated differently, the addition of action
potentials do not necessarily trigger an addition increase in the fluorescence strength as the fluores-
cence measurements can become get saturated with strong bursts [15]. Within the time interval of
calcium imaging (which has a sampling frequency of several tens of Hertz), the precise position is
difficult to infer, which could also make the response nonlinear. The convolution can be expressed
as G(i)ci = si inversely, where G(i) is the deconvolution matrix corresponding to the exponential
kernel [7, 15, 17]. One important improvement of this work is addressing the issue of background
noise, both globally and locally. [17] noticed that background noise is a serious issue in signal
extraction. This can significantly diminish the performance of the methods based on correlation
[12]. In the preprocessing step, Zhou et al. use a mean subtracted filter to spatially smooth the
video, which turned out to be very effective. The background is decomposed into B = Bf + Bc,
Bc = b01T is the constant offset, Bf is the fluctuating signal, where Bf

i,g =
∑

j∈Ωi
wijB

f
j,g ,

Ωi = {j | ∥xi − xj∥2 ∈ [ln, ln + 1]}, which indicates neighboring pixels with distance ln from the
i’th pixel. In summary, the goal is to optimize the following problem,

min
A,C,S,Bf ,W,b0

∥Y −AC −Bf − b01T ∥2F

subject to A ≥ 0 element-wise, and is sparse and spatially localized

ci, si ≥ 0, G(i)ci = si, si is spare.

Bf1 = 0

Bf = W (Y −AC − b01T )
Wij = 0 if ∥xi − xj∥2 /∈ [ln, ln + 1)

(3)
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The overall problem is non-convex, but it can be optimized iteratively by fitting parameters
separately [17].

2.2 An fast algorithm with ℓ0 constraint

The second representative work is done by [9, 8]. This method does not consider the spatial location
of neurons in the field of view. Instead they start with the extracted fluorescence of each neuron with
well performed background subtraction. Their model is,

yt = β0 + ct + ϵt, ϵt ∼ N (0, σ2) (4)

ct = γct−1 + st, t = 1, ..., T (5)

The notations are the same as the last paragraph. In this model, the calcium fluorescence only
depends on the value during the last time interval, and decreases after neural activity events, which is
the same as [17]. They do not consider the fluctuating background with local information, assuming
instead that it is constant. Thus, the goal is to optimize the following equation,

min
c1,...,cT
s2,...,sT

{
1

2

T∑
t=1

(yt − ct)
2 + λ

T∑
t=2

I(st ̸= 0)

}
(6)

subject to st = ct − γct−1 ≥ 0 (7)

The ℓ0 penalty forces the solution of st to be sparse. It also has to be non-negative due to the
biophysiological constraint that that the action potential count for each neuron is nonnegative and
action potentials can only cause a positive calcium fluorescence response. [9] show that this problem
can be solved efficiently by dropping the condition that ct − γct−1 ≥ 0, which is,

min
c1,...,cT
s2,...,sT

{
1

2

T∑
t=1

(yt − ct)
2 + λ

T∑
t=2

I(st ̸= 0)

}
(8)

subject to st = ct − γct−1 = 0 (9)

In their later paper [8], the authors facilitate the algorithm to make the computation much more
efficient. Additionally, as this problem is nonconvex, it can be relaxed without a substantial loss in
performance:

min
c1,...,cT
s2,...,sT

{
1

2

T∑
t=1

(yt − ct)
2 + λ

T∑
t=2

||st||

}
(10)

subject to st = ct − γct−1 ≥ 0 (11)

2.3 A Bayesian model

The third work given by [15] uses Bayesian inference. The calcium fluorescence response model is
still the same as equation 2 [14]. Authors assume that the si ∼ Bernoulli(p), and the probability
is independent of time. Stated differently, the firing rate of a neuron is homogeneous across time.
In this work, authors add one more layer between calcium ion concentration and the observation of
fluorescence.

[Ca2+]t − [Ca2+]t−1 = −∆

τ
([Ca2+]t−1 − [Ca2+]b) +Ast + σc

√
∆ϵc,t (12)

Ft = α[Ca2+]t + β + σF ϵF,t (13)

σc scales the Gaussian noise of calcium ion concentration ϵc,t. σF scales the fluorescence strength.
In addition, they relax assumptions to incorporate nonlinear saturation of the fluorescence signal,
as well as external stimulus and history dependent events, such as neural refactory periods. The
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observations are Ot = Ft. The hidden states are Ht = {st, [Ca2+]t}. The parameters are θ =
{τ, [Ca2+]b, A, σc, σF , p}. The overall model is,

Pθ(O1:T ,H1:T ) = Pθ(H0)

T∏
t=1

Pθ(Ht|Ht−1)Pθ(Ot|Ht) (14)

The probability of the observed fluorescence give the underlying calcium ion concentration and the
neural activities,

Pθ(Ot|Ht) = Pθ(Ft|[Ca2+]t, st) = Pθ(Ft|[Ca2+]t)

= N (Ft;α[Ca2+]t + β, σ2
F ) = N (Ft; [Ca2+]t, 1)

(15)

The probability of hidden states transition,

Pθ(Ht|Ht−1) =Pθ(Ft, st|Ft−1, st−1)

=Pθ(Ft|Ft−1, st−1)Pθ(st)

=N (Ca2+]t : µ(st), σ2
c )p

st(1− p)1−st

where µ(st) =[Ca2+]t−1 −
∆

τ
([Ca2+]t−1 − [Ca2+]b) +Ast + σc

(16)

The conditional independence between the probability of fluorescence and neural activities is
due the homogeneous Bernoulli assumption. The authors use a particle filter to approximate
the forward recursion. The goal of the problem is to infer neural activity given the observation
Pθ(H1:T |O1:T ). This inference may be well approximated by generating a number of weighted
samples (i.e. “particles")[6].

2.4 Nonlinearity of the fluorescence response signal

According to both a public competition [2] scoreboard and [5], the unsupervised MLspike method
out performs other methods, including some supervised learning method. Two potential significant
advantages are their nonlinear model for the fluorescence response to the calcium concentration and
fluctuating background. Their model is the following,

ct = γct−1 + nt (17)
Bt = Bt−1 + ηwt (18)

Ft = Bt(1 +A
ct

1 + νct
) + σϵt (19)

Where ϵ and wt are independent unit Gaussian random variables. Authors model the fluorescence
responses in separate steps. The exponentially decreasing calcium concentration assumption is the
same as previous subsections. The fluctuation background is modeled with a brownian motion. The
fluorescence response is a nonlinear function of calcium concentration. If ν = 0, it is equivalent to
previous method. If ct is a large value, the fluorescence will get saturated. This nonlinear effects
have been reported by [3, 16, 13]. The goal of the model is to maximize the target equation below,

x̂ = argmax
x

p(x|F) (20)

x = {(ni, B1), ..., (nT , BT )} contains the hidden variables. F is the observed fluorescence signal.
The above equation can be decomposed into the following akin to hidden Markov chain,

p(x|F) = p(x1)p(F1|x1)p(x2|x1)p(F2|x2)...p(xT |xT1)p(FT |xT ) (21)

The expansion is based on assuming xt+1, ..., xT , Ft+1, ..., FT are independent of
Ft, xt−1, Ft−1, ..., x1, F1 given xt. As for the hidden states transition probability and condi-
tional observation probability,

p(xt|xt−1) = λk e
−kλ

k!
, if ∃k, s.t. ct − γct−1 + k (22)

p(Ft|xt) = N

(
Bt(1 +A

ct
1 + νct

), σ2

)
(23)
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3 Methods

3.1 Trend filtering for background denoising

OASIS is a state-of-the-art method for detecting neural activity [7]. The heart of OASIS utilizes
interior point methods to solve the following convex optimization problem:

min
c,s

∥y − c∥2 + λs∥s∥1

subject to s = Gc
s ≥ 0

(24)

where y is the observed fluorescence, c and s are the estimated fluorescence and spikes respectively.
G denotes the convolution matrix, specifically:

G =

 1 0 0 ...
−γ 1 0 ...
0 −γ 1 ...
...



We re-implemented this component of OASIS in order to identify and investigate any prevalent
systematic errors. Specifically, we found that, in many instances, it does not properly capture the rate
of decay in the fluorescence. We hypothesized that this is due to the model not properly accounting
for noise in the baseline fluorescence. Thus we formulated the following convex model:

min
c,s,b,u

∥y − c − b∥2 + λu∥u∥1 + λb∥b∥2 + λs∥s∥1

subject to s = Gc
u = Db
s ≥ 0

(25)

where b is the estimated background noise. We choose to use second order trend filtering. In
practice, in order to let the filter to better constrain the whole timecourse smoothness, we shift the
off-diagonal by 2 steps, so that the second derivative is calculate using data points little further away.

D =


−2 0 0 1 ...
0 −2 0 0 1 ...
0 0 −2 0 0 1 ...
1 0 0 −2 0 0 1 ...

...

 (26)

Using trend filtering helps insure the background noise is smooth across time, while the L2 penalty
on the background noise helps avoid over-fitting. Deconvolving the calcium trace provides a win-
dowed spiking estimate. Since the absolute time of spike firing is a non-identifiable problem, we
illustrate our results using cross-correlation against the true poststimulus time histogram.

3.2 Sparser reconstruction using L0 penalty

Because the L1 penalized problem produces solutions that are not sparse enough, [9] use an L0
penalty to obtain a better solution. Although this makes the problem nonconvex, the authors design
an algorithm to solve the problem in polynomial time. They solve the problem

min
c,s

∥y − c∥2 + λs∥s∥0

subject to s = Gc
s ≥ 0

(27)
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where y, c, s and G are the observed fluorescence, estimated fluorescence, spike train, and convolu-
tion matrix as above. The authors reduce this problem to a changepoint detection problem:

min
0=τ0<τ1<···<τk<τk+1=T,k


k∑

j=0

D(y(τj+1):τj+1
) + λk


where D(ya:b) = min

α

{
1

2

b∑
t=a

(yt − αγt−b)2

} (28)

D represents the distance between the observed and estimated fluorescence signal between each
pair of spikes. This can be solved using dynamic programming in O(T 2) time, where T is the
number of time points. [8] make the computation even more efficient, so that solving the problem
for T = 100000 takes less than a second.
Both the L1-penalized problem and the L0-penalized problem do not produce sparse enough outputs,
and predict spikes that are too close together to be biologically feasible. Therefore, we further
modify our approach.

3.3 Bayesian reconstruction

We notice that in the binned spike train with bin width of 10ms, most bins contain either 0 spikes or
1 spike. Only a few bins have 2, and they rarely have 3 spikes or more. This is biophysiologically
reasonable due to the refractory period, which is around 3-4 ms [1]. When the neuron has higher
firing rate, the output using L1 penalty cannot have output sparse enough. This motivates us to use
integers in range {0, 1, 2, 3} to make the results more sparse, and get biologically realistic action
potentials. However, in general, integer programming is not a strict convex optimization problem,
and an exact solution is an NP problem [4]. Some approximate solutions usually requires a simple
form of the problem, which can not be easily adapted to the problem in equation 25. For the calcium
imaging and spike train time sequences, events have temporal dependence, such as the exponential
decay of the fluorescence signal, and the sharp increases trigger by action potentials. Thus, we treat
the fluorescence signals and underlying spike trains as a hidden Markov chain, where the spike trains
contribute to the hidden states, and the noisy observed signal depends on the model fluorescence
signal. The transition between model fluorescence signal follows the rule of exponential decay. The
goal is to find the most likely spike trains matching the observed signal. In these method, we use the
background corrected signal as the input.

max
n,θ

p(c|y;θ) = max
n,θ

p(y|c)p(c)

=max
n,θ

p(c0)

T∏
t=2

p(ct|ct−1)

T∏
t=1

p(yt|ct)
(29)

yt is the observed fluorescence signal, ct is the model signal.

p(yt|ct) =
1√
2πσ

exp{− 1

2σ2
(yt − ct)

2} (30)

p(ct|ct−1) =

{
eλ λk

k! if |ct − γct−1 −Ank| ≤ τc, k ∈ {0, 1, 2, 3}
0 otherwise

(31)

The most likely sequence can be estimated backward along the Markov chain, similar to Viterbi’s
algorithm.

M(ct, t) = max
nt+1:T

p(ct+1:T , yt:T |ct)

=p(yt|ct) max
nt+1:T

p(ct+1|ct)p(ct+2:T , yt+1:T |ct+1)

≈p(yt|ct)max
nt+1

p(ct+1|ct)M(ct+1, t+ 1)

(32)

The ct and nt can be obtained by calculating M(ct, t) from T to 1. We follow the method in [7, 5]
to tune the parameter σ, τc, γ.
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4 Results

With correction of background, we achieve higher performance in neural activity reconstruction.
The slow changing background is usually unobserved, and this can lead to both false positive and
false negative. For example, when the background is increasing, the model without consideration of
this artifact will output more spikes. When the background is decreasing, it will detect less spikes
vice verse. We notice that the background changes much slower compared to the transient changes
triggered by action potentials, so without the correction of the background, it will result in obvious
systematical error, usually comes with more false positives cases than false negative cases in a large
range, and the other way in some other ranges.

Figure 2: Our method outperforms the core OASIS method for 9 tested datasets.

By using the background corrected florescence signal, we further parse the neural activities into a
sequence of integer, which is more biophysiologically realistic. By inheriting the advantages of the
background correction method, the predicted fluorescence signal reconstructed by Bayesian method
matches the real signal quite well as shown in figure 3. With contaminated noise, exact timestamps
are hard to be recovered, but the smoothed neural activities matches the real recordings quite well
(data not shown).
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Figure 3: Reconstructed fluorescence signal, neural activities and background.
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5 Conclusions and Future Plan

We provide several novel methods of estimating neural activity from fluorescence signals, show the
experimental results from two of these frameworks and provide evidence that one of these methods
is an improvement upon a state-of-the-art algorithm. We reviewed several existing calcium imaging
methods and detailed their relationship to the convex optimization methods detailed in class. We
intend to continue work on this project in hopes of eventual publication. Specifically, we intend to:

• Estimate the background fluorescence with a Gaussian process
• Refine the Bayesian method using a backward-forward method, and increase the order of

Markov chain
• Optimize our algorithms and formulate our code into a publicly available package
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