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Abstract

As imaging and electrophysiology experiments grow in number of neurons being
monitored, dimensionality reduction has been commensurately growing in use as
an analysis technique for denoising and capturing the latent structure of neural
data, where each dimension of the original space is defined by the activity of a
single neuron. We propose to extend the current factor analysis based techniques
through the model space reduction ideas of active learning. Utilizing Hessian local
linear embedding in conjunction with this active learning approach, we present a
novel method of sampling the underlying neural manifold in order to select a small
number of "summary points" that encapsulate the structure of the entire manifold
in the original space. This would allow experimenters to pick samples, based on
previous simulation or experimental results, that will allow for rapid manifold
estimation in the original response space, where samples can be sensory stimuli or
motor intentions.

1 Introduction

Neural population dynamics has become a central focus due to the rapid increase in the number
of neurons that can be recorded simultaneously in vivo. Following a pattern akin to Moore’s law,
this number has doubled approximately 7 years (Stevenson & Kording, 2011) and thus has lead to
increased interest in how to estimate the low dimensional structure in the high dimensional data space.
The state of the art include (Yu et al. , 2009) for brain computer interfaces, (Kobak et al. , 2016) for
supervised dimensionality reduction use-cases, and (Buesing et al. , 2012) for temporally smooth
spaces. More recently, some statistical neuroscientists are beginning to consider more efficient
sampling techniques by leveraging the sampling history or simulations (Lewi et al. , 2009; Bak
et al. , 2016; Cowley et al. , 2017a). Additionally, naturally occurring high dimensional data with
low dimensional nonlinear structure has also been studied in manifold learning field (Belkin &
Niyogi, 2002; Tenenbaum et al. , 2000; Roweis & Saul, 2000). Ghashami et al. (2016) showed one
way of doing manifold estimation kernel principal components analysis (PCA) on streaming data,
Schölkopf et al. (1998) provided nonlinear PCA for close purpose. Cowley et al. (2017b) could
handle nonlinear manifold neural activity structure using distance covariance analysis. Belkin &
Niyogi (2002) suggested natural clustering could serve as basis for low dimensional recovering, and
Voevodski et al. (2012) proposed efficient active learning clustering by using a small sample set as
landmarks. Additional manifold learning studies can be found in (Bengio et al. , 2006; Brand, 2003;
Donoho & Grimes, 2003; Hinton & Roweis, 2003; Maaten & Hinton, 2008; Bengio et al. , 2013).
Nevertheless, such advanced methods have not been widely implemented in neural datasets, due to
their non-robustness against neural noise.
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Theoretical progress has been made regarding sample efficient ways to solve related unsupervised
learning problems (Settles, 2010, 2012). (Krishnamurthy & Singh, 2013) investigated how to use
active sampling to complete a matrix or tensor. Dasarathy et al. (2016) showed how to constrain
estimates of graphical models with active learning. (Zhang et al. , 2011; Li et al. , 2014; Zhang et al.
, 2017) were novel works implementing active learning on exploring nonlinear manifold through
geometric methods. Active learning for reduction of expensive experimental steps is growing in
computational biology (Naik et al. , 2016; Voevodski et al. , 2012), but this innovation has yet to
make major inroads in neuroscience.

Rapid manifold estimation cuts down redundant electrophysiolocial experimentation. Manifold
estimation is an important element in understanding the underlying neural representations (Sadtler
et al. , 2014) and is thus a request measurement for many experiments. Rapid manifold estimation
is especially pertinent for experiments involving human or nonhuman primate subjects, as data
collection is especially time sensitive due to factors such as expense and subject motivation. This
is especially true in the case of brain-computer interfaces (BCI). BCI involves decoding neural
activity, traditionally recorded from motor cortex, to drive an end effector, such as a cursor on a
computer screen. As such, BCIs often rely on the subject generating specific neural patterns to
represent intentions and therefore BCI activity that samples from within the manifold space is more
effective than those that require activity outside the neural manifold (Sadtler et al. , 2014). For human
patients suffering from severe paralysis, BCI may serve as the only mode of communication. Due
to potential instabilities in the neural signal, BCIs often have to be recalibrated (Jarosiewicz et al. ,
2017). Manifold estimation can be an important component of BCI recalibration, and thus reducing
the amount of time necessary for manifold estimation could reduce the burden on the BCI user.

We extend the results of (Zhang et al. , 2011) to develop a novel unsupervised metric that selects the
data points that provide the best structural representation of the neural manifold utilizing Hessian local
linear embedding and active learning paradigms. We also present the results on both simulated and
real neural data from the visual system of nonhuman primates, collected by the authors, to validate
the efficiency and effectiveness of our algorithm. The focus on vision stems from data availability
and not necessarily the constraints of our methods.

2 Method Description

2.1 Manifold learning

First we compare recent popular manifold learning algorithms (Wang, 2011), including local linear
embedding (LLE) (Roweis & Saul, 2000), isomap (Tenenbaum et al. , 2000), Laplacian eigenmaps
(LEIGS) (Belkin & Niyogi, 2002), and Hessian local linear embedding (HLLE) (Donoho & Grimes,
2003). As these techniques are unsupervised and don’t rely on prior knowledge of the manifold
structure, all of them rely on the same strategy for extracting low dimension manifold structure.
These algorithms search for the local spatial relationship among neighboring points first, then
construct a new global coordinate for each point within the manifold. Stated differently, these
algorithms employ an "explore locally then reconstruct globally" approach. Some of the algorithms
can both use K nearest neighbor points or data points within a sphere during the explore locally step.
Either method provides similar results so we will focus on the K nearest neighbors approach to keep
the paper succinct.

LLE uses the linear combination of K nearest neighbors to localize each point by minimizing the
reconstruction error over the weights

∑
i

∣∣Xi −
∑

j∈OK(Xi)
WijXj

∣∣2 with constrain
∑

j Wij = 1,
OK is the neighbor set. Such method using local points to explore is not sensitive to rotation
or linearly stretching of the manifold. The underlying low dimension manifold will keep points
tight. Once the weights are obtained, it looks for embedding coordinates which can minimize∑

i

∣∣Yi −∑j∈OK(Xi)
WijYj

∣∣2. Since both target equations are quadratic, analytical solutions can be
easily obtained.

Isomap uses the shortest path between all pairs of points to "explore locally". The shortest path
distance matrix D can be acquired using Floyd-Warshall algorithm Cormen (2009). Let S = D ◦D,
where ◦ denotes the Hadamard product. Then centralize the S by subtracting the row and column
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Figure 1: A comparison of manifold learning algorithms on simulated data. The first row is the results
of swiss-roll dataset, the second row is about swiss-roll with a hole. LLE can reconstruct both cases,
but it loss the geodesic distance for a folded shape. The distance between points on the inner end is
different from that on the outer end. LEIGS cannot handle too folded shapes. Isomaps using shortest
path to “explore locally”, so it maintains the geodesic property very well, but it is sensitive to the
topology of the structure, the hole will stretch the shape around that. So far the HLLE performances
the best on both folded shapes.

mean. S reflects the geodesic distance between points within the manifold. The principle covariance
analysis (PCA) is used to find the new coordinate axis, along which the data points are most widely
spanned.

Laplacian eigenmaps also starts with pairwise shortest paths like Isomap. The goal is finding an axis
where the projections of data points stay as close as possible. In another word, we aim to minimize∑

i,j(yi− yj)2Wi,j , where Wi,j = e−
||xi−xj ||

2

σ , σ is a kernel parameter. The further points get more
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weight in order to push them together. After a few simple steps of calculation, the target is equivalent
to searching for eigenvectors with minimal eigenvalues of Ly = λDy, where D is a diagonal matrix,
with Dii =

∑
j Wi,j . L = D −W . This method has a geometric meaning. Let f : M → R be

a function mapping manifold points to a real number. If we add a small disturb δ at point x, we
see the consequence disturb of the function is |f(x + δ) − f(x)| ≈ |〈f(x), δ〉| ≤ ||∇f || · ||δ||.
First approximation comes from local linear approximation, the second inequality comes from the
definition of operator norm. If we want to find a low dimension manifold, we want project the points
to stay as closer, so we want to minimize,

∫
M ||∇f(x)||2 where f has unit L2 norm. It has been

shown that
∫
M ||∇f(x)||2 =

∫
M L(f) · f . The Laplacian-Beltrima operator is L = div∇(f).

Hessian LLE considers local Hessian instead of local Laplace-Beltrsmi operator, i.e. to minimize the
Hessian functionalH(f) =

∫
M ||H

tan
x (f)||2F , Htan

x denotes the local tangent Hessian evaluated at
x with respect to the tangent hyperplane through x. As has been proved, the Hessian functionalH
has d+ 1 dimension null space. For discrete expression on dataset, we can only use the K nearest
neighbors to construct local Hessian, so for each point xi only consider the function as a vector of
fi = [f(xi1), f(xi2), ..., f(xik)]T . H(f)|Wi

= fTi Wifi. Wi is a K ×K matrix whose null space
contains coordinate functions of the tangent space. Thus basis for the Hessian functional can be
constructed using singular vectors and their 2-way interaction (Hadamard product between vectors)
of M i = [(xi1 − x̄), (xik − x̄)]. Now the problem is reduced to find the eigenvectors with smallest
eigenvectors of the sum of Wi for all points.

2.2 Active Manifold learning

Inspired by (Zhang et al. , 2011), we develop an algorithm combining the manifold learning and
active learning to select the most informative points representing the the manifold. Zhang et al.
(2011)’s algorithm achieved this goal through minimizing two target equations by incorporating LLE,

ε(q1, q2, ..., qm) =

k∑
i=1

||qsi − xsi ||2 + µ

m∑
i=1

||qi −
m∑
j=1

Wijqj ||2

=

k∑
i=1

||qsi − xsi ||2 + µtr(QTMQ)

(1)

where M = (I −W )T (I −W ). Instead of seeking low dimension representation, (Zhang et al. ,
2011)’s method is looking for reconstructed coordinates Q still in high dimension first. The selected
points are not too far away from corresponding original points (first term), while maintaining the
manifold structure (second term) using local nearest neighbors’ weights W .

e(xs1 , xs2 , ..., xsk) = ||X −Q||2 (2)

The first equation is a quadratic function of Q, so the exact solution can be achieved. The optimal
solution is a function of a subset of data points {xs1 , xs2 , ..., xsk}. The second equation chooses that
subset to minimize the difference between original data points and reconstructed data points using
sequential method, which just selects the points xsi one by one.

One advantage of this method is that it merges active learning and manifold learning by simply
combining the target equations. Our method adopts this framework by replacing the manifold learning
optimization component. Since LLE does not perform well on non-convex structure, and could
lose the intrinsic geodesic distance in low dimension space as shown in figure 1, we choose to use
HLLE. As introduced in last section, HLLE explores the local structure via Hessian operator, and the
optimization is also quadratic.

ε(q1, q2, ..., qm) =

k∑
i=1

||qsi − xsi ||2 + µ

∫
M
||Htan

x (f)||2F dx

=

k∑
i=1

||qsi − xsi ||2 + µtr(QTKQ)

(3)
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e(xs1 , xs2 , ..., xsk) = ||X −Q||2 (4)
Akin to active HLLE, the framework can also be extended to LEIGS.

3 Results

3.1 Manifold Learning

Our model not only performed well on the more regular shapes as shown in Figure 1, it also
successfully unfolded the more noisy and complicated neural data. This data includes the response of
23 neurons to 180 images from 4 classes, with each class containing 45 images. As shown by Figure
2, PCA failed to learn the intrinsic structure of the neural space spanned by those 180 images. With
PCA, the four classes overlap. In contrast, our model was able to separate them,as shown by the four
clearly grouped clusters. The red boxes denote the 20 "summary points" returned by our model.

Figure 2: Left: PCA; Right: manifold learned by our model. Different colors represent images from
different classes.

Figure 3: Left: sampling from swiss roll; Right: unfolding in 2d.

3.2 Sampling within the manifold

Besides unfolding the swiss roll, our model was able to sample most representative points from the
data as shown in Figure 3. This figure shows 400 points, with half of them contained with a small
subsection, denoted by the blue box. Our model avoids the influence of point density while sampling,
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instead sampling uniformly along the manifold space. Thus the samples selected from within the
blue box are roughly proportional to the area of the blue box in comparison to the area of the entire
manifold.

We also tested it on simulated V1 neural data. Gabor is the most commonly used model for V1. We
picked 24 Gabor neurons, Figure 4, including 8 orientations and 3 frequencies (0.55, 1.1 and 2.2
cycles/degree) which are the typical used to model V1 neurons. 800 randomly sampled images from
ImageNet (Deng et al. (2009)) were then presented to the 24 Gabor neurons with effectively size of
one degree. The modulus of the complex response is then taken as the Gabor response.

Figure 4: 24 Gabor filters in 8 orientations and 3 frequencies.

Sparsity is an important character of V1 neurons. The sparseness we used here is from Vinje (2000)
and defined as S = [1− (

∑
i ri/n)2/

∑
i(r

2
i /n)]/(1− 1/n) where ri is a neuron’s response to the

ith image. A neuron will not respond to most image stimulus or responds to many images in the
weak way. There are only 5% of images in the dataset that can evoke relatively higher responses. This
causes a lot of redundancy in experiments. As experimental time for animals is restricted, it requires
an efficient way to choose images in order to avoid those that evoke either no response or a response
similar to all other images. Gabor filters have been commonly used in modeling the function of V1
neurons. In our simulation, we use the output of Gabor filters over images to represent the neural
response. Our algorithm selects images corresponding to data points evenly distributed in neural
response space, so it can efficiently cover all different neural response strengths within 20 stimulus
(5). Under random selection, about 125 images are needed and may still miss many areas of neural
response space (Woloszyn & Sheinberg, 2012).
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Figure 5: Tuning curve from the original 800 images (blue), 20 images randomly sampled from the
images space (red), and 20 images sampled by our model from the neural space (green).

4 Discussion

A more attractive method for neuroscientists, but also a more challenging task, is to adaptively
select the stimulus in order to uncover the unknown portions of the neural response manifold in an
online setting. However, this requires further study into the relationship between stimulus and neural
response and it is not sufficient to simply understand the neural response manifold. More specifically,
greater research needs to be done to figure out how to design stimulus avoiding evoking the existing
response.

For the visual system recordings and simulations, we visualized the low dimension neural response
manifold to see if the selected dataset was evenly distributed in order to verify our results. Since
there is no specific training tasks for the neural response dataset, like there were for Zhang et al.
(2011), it is hard to quantify the validation of results. The tuning curve method can provided a partial
verification, but more sophisticated methods for verification need to be developed. For motor system
data, we could potentially perform learning task or using decoder through brain-computer interface.
The decoding accuracy over the selected data set versus the whole dataset can be used to evaluate the
algorithm. We leave these ideas as an avenue for future research.
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